Extensions 1→N→G→Q→1 with N=C32 and Q=C41D4

Direct product G=N×Q with N=C32 and Q=C41D4
dρLabelID
C32×C41D4144C3^2xC4:1D4288,824

Semidirect products G=N:Q with N=C32 and Q=C41D4
extensionφ:Q→Aut NdρLabelID
C32⋊(C41D4) = C4⋊S3≀C2φ: C41D4/C4D4 ⊆ Aut C32248+C3^2:(C4:1D4)288,879
C322(C41D4) = C12⋊D12φ: C41D4/C2×C4C22 ⊆ Aut C3248C3^2:2(C4:1D4)288,559
C323(C41D4) = C62.84C23φ: C41D4/C2×C4C22 ⊆ Aut C3296C3^2:3(C4:1D4)288,562
C324(C41D4) = C62.121C23φ: C41D4/C23C22 ⊆ Aut C3248C3^2:4(C4:1D4)288,627
C325(C41D4) = C3×C4⋊D12φ: C41D4/C42C2 ⊆ Aut C3296C3^2:5(C4:1D4)288,645
C326(C41D4) = C124D12φ: C41D4/C42C2 ⊆ Aut C32144C3^2:6(C4:1D4)288,731
C327(C41D4) = C3×C123D4φ: C41D4/C2×D4C2 ⊆ Aut C3248C3^2:7(C4:1D4)288,711
C328(C41D4) = C62.258C23φ: C41D4/C2×D4C2 ⊆ Aut C32144C3^2:8(C4:1D4)288,797


׿
×
𝔽